
1

CS-200
Computer Architecture

—
Part 3a. Memory Hierarchy

Caches

Paolo Ienne
<paolo.ienne@epfl.ch>

2

The Five Classic Components of a Computer

Control

Datapath

Memory

Out

In

Processor Interfaces

Memory

3

Memory Performance over Time

A widening performance gap for decades… …now more
stable because fop

of processors is
almost stableStill a 3 orders of

magnitude gap!

4

The Tension between Big and Fast!

This is your CPU
You want it fast!

This is your memory subsystem
You want it big!

5

Our Goal Today: Use Different Memories

Can we get the best of both worlds?!

Memory

Processor

DRAM
(slow but cheap)

SRAM
(fast but expensive)

<1 ns
~10 kB

30-50 ns
~10-100 GB

Access time

“Affordable
amount”

6

Our Goal Today: Use Different Memories

Processor

DRAM
(slow but cheap)

30-50 ns
~10-100 GB

SRAM

<1 ns
~10 kB

SRAM

10-20 ns
~1-10 MB

SRAM

3-10 ns
~100 kB

Using the same
technology,

smaller is faster

7

Where to Put What—and How?

Memory

Processor

DRAM
(slow but cheap)

SRAM
(fast but expensive)

<1 ns
~10 kB

30-50 ns
~10-100 GB

?

8

What Memory to Use?

• Instructions corresponding to lines 3-5 are read over and over: should be in fast
memory

• If variables i and sum are stored in memory, they are also used often and should be
stored in fast memory

• One would like to anticipate the future and load following instructions and vector
elements

1: i = 0;
2: sum = 0;
3: while (i < 1024) {
4: sum = sum + a[i];
5: i = i + 1;
6: }

9

Spatial and Temporal Locality

Two important criteria to decide on placement:

• Temporal Locality
– Data that have been used recently, have high likelihood of being used again

• Code: loops, functions,…
• Data: local variables and data structures

• Spatial Locality
– Data which follow in the memory other data that are currently being used are

likely to be used in the future
• Code: usually read sequentially
• Data: arrays

1
0

Our Placement Policy Must Be…

• Invisible to the programmer
– One could analyse data structures and program semantics to detect heavily used

variables/arrays and thus decide placement  Ok in some contexts (embedded)
but we want to have the programmers not go through this hassle

– We will add hardware to help

• Extremely simple and fast
– If decisions are to be made in hardware, they need to be simple
– Goal is to access fast memory in the order of a ns or less: not much time to make

complex decisions…

1
1

Cache: The Idea

Needs data at addresses:
1000
1001
3000
1002
3000
1002
3000
1002

Data
(SRAM)

Directory

1
2

Not Just Fast Memory: Directory and Tags

Tags: Minimal identifiers we use
to check if something is

in the cache (not necessarily
the whole address!)

Data
(SRAM)

Directory

Directory: Additional memory
to remember tags of data
that we have in the cache

Comparators to check
incoming tags against

all those stored

1
3

A Cache!

Cache:
“a collection of items in

an hidden place”
Data

(SRAM)
Directory

1
4

Cache Hits and Misses

• A cache is any form of storage which takes automatically advantage of
locality of accesses
– The idea works so well that now they are not only in processors!
– Web browsers have caches, network routers have routing information and even

data caches, DNSs cache frequent names, databases cache queries…

• When we find the data required in the cache, we call it a Hit; otherwise it
is a Miss

• Hit (or Miss) Rate is the number of hits (or misses) over the total number
of accesses

1
5

Fully-Associative Cache

Directory Memory (SRAM)

Registers
CAM

Content
Addressable

Memory

Request is not an “index” but “data” we
search  “content addressable”

1
6

Fully-Associative Cache

The representation
we will use

A line or a block of the cache

1
7

Cache and Cache Controller

processor memory

Address

Data

1
8

Cache and Cache Controller

processor

cache
controller

memory
data

directory
cache

$

1
9

Cache and Cache Controller

processor

cache
controller

memory
data

directory

2
0

Cache Hit

processor

cache
controller

memory
data

directory

HIT

2
1

Cache Miss

processor

cache
controller

memory
data

directory

MISS

Take note
of the data for
future requests

2
2

Cache and Cache Controller

processor

cache
controller

memory
data

directory
cache

$

A pure
hardware

device

2
3

What If the Cache Is Full?

0x100 M[0x100]
0x0F5 M[0x0F5]
0x300 M[0x300]
0x17D M[0x17D]
0xFFE M[0xFFE]
0x200 M[0x200]

0x400

M[0x400]
(from memory)

?

2
4

Eviction Policies

• When there is no appropriate space for a new piece of data, we must
overwrite one of the existing lines (eviction or replacement)

• Several policies to decide what to evict:
– Least Recently Used (LRU)

• Replace the data that have been unused for the longest period of time
– First-In First-Out (FIFO)

• Replace the data that came in earliest
– Random

• Pick one, any one, and throw it away…
– Approximate schemes, etc…

2
5

Only Exploiting Temporal Locality

We only bring from main memory to the cache
exclusively the data required and when required,

hoping to use them again

If the processor asks for neighbouring items
(e.g., M[0x101]), we will not have it;

we are not able to exploit any spatial locality

2
6

Exploiting Spatial Locality

If the processor asks for any of these words,
we fill in from memory the whole line

2
7

Why Not This?!

0x125 M[0x125] M[0x126] M[0x127]

…and bring the value in
together with the next 1, 2, 3, 4,…

If we are asked 0x125,
we store the address as a tag…

2
8

0 1 2

Why Not This?!

0x125 M[0x125] M[0x126] M[0x127]

If now we are asked 0x127,
we cannot compare with the tag!

We need to check if
Tag ≤ Address < Tag + 3

(0x125 ≤ 0x127 < 0x128)

?

We select the right one
with Address − Tag

(0x127 − 0x125 = 2)

2
9

0 1 2 3

This Is Much More Hardware Friendly!

0x49 M[0x124] M[0x125] M[0x126] M[0x127]

…

0x11F

0x120

0x121

0x122

0x123

0x124

0x125

0x126

0x127

0x128

0x129

0x12A

0x12B

…

Not
a candidate
line of cache

A candidate
line of cache

(1) Alignment

(2) Power-of-2 Elements per Line

Select = Address mod 4
(0x125 mod 4 = 1,
0x127 mod 4 = 3)

Tag = int(Address / 4)
(0x125 / 4 = 0x49,
0x127 / 4 = 0x49)

3
0

Hardware Friendliness Is Essential

This cache may be better, because if the
processor asks 0x127 we bring in potentially

useful stuff instead of stale stuff…
…yet, this cache is FEASIBLE!

3
1

Fully-Associative Cache

This is a RAM and is cheap

These are registers and
relatively cheap

This is too costly and too slow
unless the cache is relatively small

3
2

Very
cheap
RAM

How Can We Make It Simpler?

Any memory element
can go anywhere

Any memory
element should go
into a single place
= Addr of the RAM

A single place 
a single comparator!

3
3

How to Generate Addr and Tag?
Address

Addr (index in the cache)

index = f(address)

(1) combinational
and (2) such that every index
is “used” by a similar number

of distinct addresses
(minimal collisions)

Addr

Address

A Hash!

3
4

Address

Index

n bits

m bits

The Simplest Hashes
Address

Index

n bits

m bits

Take m bits at random
from Address,

if the addresses are
uniformly distributed

Take lowest m bits
from Address,

if these are those
changing most…

…and the rest
is the Tag

3
5

Direct-Mapped Cache

0x102

0x1 0x02
Much

cheaper!

…but does it have
any drawbacks?!

3
6

Which One Is the Best Cache?
Fully Associative Cache Direct-Mapped Cache

3
7

Which One Is the Best Cache?

• Consider a fully associative and direct-mapped cache, both with 64 lines
with four words per line ( 256 words per cache)

• Suppose accesses at 0x100, 0x101, 0x200, 0x102, 0x300, 0x103, 0x201,
0x102, 0x301, 0x103,…

• What is the Hit Rate of each of these two caches?

3
8

0x100 0x101 0x200 0x102 0x300 0x103 0x201 0x102 0x301 0x103

Fully
Ass.

Direct
Mapp.

=
=
=
=
=
=
=
=

=
=

… …

0:
1:
2:
3:
4:
5:
6:
7:

62:
63:

… …

Address Address

3
9

Cache Pollution, or Conflict Misses

• Addresses 0x1…, 0x2…, and 0x3… use the same line of the direct-
cache (they are said to alias)  Cache pollution or conflict misses

• Fully associative cache is much more robust than direct mapped

0x100 0x101 0x200 0x102 0x300 0x103 0x201 0x102 0x301 0x103

Fully
Ass.

M H M H M H H H H H

Direct
Mapp.

M H M M M M M M M M

4
0

Associativity

• The probability of aliasing is related to the associativity of caches
• Associativity indicates the number of different positions in a

cache where one element of data can be placed:
– Fully-associative: every word can go in every line of the cache (hence

the “full”)  associativity is the number of lines in the cache
– Direct-mapped: every word is “mapped” to a single line of the cache 

associativity is 1

Can we think
of any intermediate possibility?

4
1

Set-Associative Cache

Multiple replicas of the
direct-mapped structure

 a Way

As many comparators
as the ways


comparators = associativity

2-Way Set-Associative Cache

4
2

Set-Associative Cache

A line or a block

A set

4
3

A Continuum of Possibilities

Tag Data

Set #7

=

Set #6
Set #5
Set #4
Set #3
Set #2
Set #1
Set #0

1-way = direct

Tag Data Tag Data

Set #3

= =

Set #2
Set #1
Set #0

2-way

Set #1

= = = =

Tag Data Tag Data Tag Data Tag Data
Set #0

4-way

=

Tag Data
Set #0

=

Tag Data

=

Tag Data

=

Tag Data

=

Tag Data

=

Tag Data

=

Tag Data

=

Tag Data

8-way = fully associative

4
4

Validity

• Initial cache content is garbage
• All caches need a special bit (Valid Bit) in each cache line to indicate whether

something meaningful is in the specific cache line (‘0’ at reset)

4
5

Addressing by Byte

• If addressing is by byte and word size is 2n bytes, the n least-significant bits of the
address represent the byte offset and are thus irrelevant

Addressing by word Addressing by byte

These bits are internal
to the processor and

do not even get to the
memory system!

4
6

Loading Bytes (lb)

32-bit
Memory

Data Out

Address
8

32 832

bits 31…2

bits 1…0
Inside the processor

Reg.
File

4
7

Write Hit

processor

cache
controller

memory
data

directory

HIT

Shall we write also
to memory?

4
8

Write Policies

• Write-through: on a write, data are always immediately written into main
memory
– Simpler policy
– May keep the memory/buses busy for nothing

• Write-back or Copy-back: on a write, data are only updated in the cache
(hence, main memory data will become wrong/obsolete)
– Needs a Dirty Bit to remember that cache data are incoherent with memory
– When a dirty line is evicted, first it must be copied back to main memory

4
9

Write Miss

processor

cache
controller

memory
data

directory

MISS

Shall we allocate a
place in the cache?

5
0

Allocation Policies

• Write-allocate: on a write miss, data are also placed in the cache
– Simple and straightforward
– Need to fetch the block of data from memory first
– If the processor writes a lot of data that it will never read back, it may

unnecessarily pollute the cache

• Write-around or Write-no-allocate: on a write miss, data are only written
to memory
– If the processor will load from the same address, it will be a Read Miss

5
1

The “3 Cs” of Caches

• Three types of cache miss

– CompulsoryMisses that would happen in an infinitely large fully-associative
cache with the same blocks (also called cold-start misses or first-reference misses)

– Capacity Additional misses that occur in a finite fully-associative cache because
the corresponding block has been evicted due to the limited capacity of the cache

– Conflict Further misses that occur because the corresponding set is full and the
block has been evicted due to the limited associativity of the cache

• Useful to understand the source of the limited performance

5
2

Summary of Cache Features
• Cache size: total data storage (usually excluding tags, valid bits, dirty bits, etc.)

• Addressing: by byte or word

• Line or block size: bytes or words per line

• Associativity: fully-associative, k-way set-associative, direct-mapped

• Replacement policy (except for direct mapped): LRU, FIFO, random, etc.

• Write policy: write-through or write-back

• Allocation policy: write-allocate or write-around

5
3

Summary of Cache Addressing

Allocate bits as required, from LSB to MSB

Address

5
4

References

• Patterson & Hennessy, COD – RISC-V Edition
– Sections 5.3, 5.4, and 5.8
– Sections 5.9 and 5.15 for more info

	CS-200�Computer Architecture�—�Part 3a. Memory Hierarchy�Caches
	The Five Classic Components of a Computer
	Memory Performance over Time
	The Tension between Big and Fast!
	Our Goal Today: Use Different Memories
	Our Goal Today: Use Different Memories
	Where to Put What—and How?
	What Memory to Use?
	Spatial and Temporal Locality
	Our Placement Policy Must Be…
	Cache: The Idea
	Not Just Fast Memory: Directory and Tags
	A Cache!
	Cache Hits and Misses
	Fully-Associative Cache
	Fully-Associative Cache
	Cache and Cache Controller
	Cache and Cache Controller
	Cache and Cache Controller
	Cache Hit
	Cache Miss
	Cache and Cache Controller
	What If the Cache Is Full?
	Eviction Policies
	Only Exploiting Temporal Locality
	Exploiting Spatial Locality
	Why Not This?!
	Why Not This?!
	This Is Much More Hardware Friendly!
	Hardware Friendliness Is Essential
	Fully-Associative Cache
	How Can We Make It Simpler?
	How to Generate Addr and Tag?
	The Simplest Hashes
	Direct-Mapped Cache
	Which One Is the Best Cache?
	Which One Is the Best Cache?
	Slide Number 38
	Cache Pollution, or Conflict Misses
	Associativity
	Set-Associative Cache
	Set-Associative Cache
	A Continuum of Possibilities
	Validity
	Addressing by Byte
	Loading Bytes (lb)
	Write Hit
	Write Policies
	Write Miss
	Allocation Policies
	The “3 Cs” of Caches
	Summary of Cache Features
	Summary of Cache Addressing
	References

