CS-200
Computer Architecture

Part 3a. Memory Hierarchy
Caches

Paolo lenne

<paolo.ienne@epfl.ch>

The Five Classic Components of a Computer

Processor Interfaces

Control

Memory Performance over Time

A widening perforr‘nance gap for decades... ...NOW more
100,000 p = stable because f,,
of processors is
10,0004 Stilla3 ordersof | .\ f g g g0-0-0-0-0-g-0- J almost stable
magnitude gap! /
o
S 1000 4-_
©
-
@)
E 100 (S .
o
10 g~ AR
1 I I | 1 I I
1980 1985 1990 1995 2000 2005 2010 2015

Year

The Tension between Big and Fast!

This is your memory subsystem
You want it big!

This is your CPU
You want it fast!

Our Goal Today: Use Different Memories

Processor

f \ Access time

DRAM SRAM “Affordable
(slow but cheap) (fast but expensive) amount”
30-50 ns <1 ns (-/
~10-100 GB ~10 kB

[Can we get the best of both worlds?!]

Our Goal Today: Use Different Memories

Processor
Using the same DRAM
technology, (slow but cheap)
smaller is faster
30-50 ns
~10-100 GB
SRAM SRAM SRAM
10-20 ns 3-10 ns <1 ns

~1-10 MB ~100 kB ~10 kB

Where to Put What—and How?

Processor
DRAM SRAM
(slow but cheap) (fast but expensive)
30-50 ns <1l ns
~10-100 GB ~10 kB

N

What Memory to Use?

Instructions corresponding to lines 3-5 are read over and over: should be in fast
memory

If variables 1 and sum are stored in memory, they are also used often and should be
stored in fast memory

One would like to anticipate the future and load following instructions and vector
elements
i = 0;
sum = 9;
while (i < 1024) {
sum = sum + al[i];
i =14+ 1;

o ey 80P T

Spatial and Temporal Locality

Two important criteria to decide on placement:

 Temporal Locality
— Data that have been used recently, have high likelihood of being used again
e Code: loops, functions,...
e Data: local variables and data structures

e Spatial Locality
— Data which follow in the memory other data that are currently being used are
likely to be used in the future
* Code: usually read sequentially
* Data: arrays

Our Placement Policy Must Be...

* Invisible to the programmer

— One could analyse data structures and program semantics to detect heavily used
variables/arrays and thus decide placement = Ok in some contexts (embedded)
but we want to have the programmers not go through this hassle

— We will add hardware to help

* Extremely simple and fast
— |If decisions are to be made in hardware, they need to be simple

— Goal is to access fast memory in the order of a ns or less: not much time to make
complex decisions...

Cache: The Idea

Address

Processor
Data

Needs data at addresses:
1000
1001
3000
1002
3000
1002
3000
1002

1002

Main Memory
36 / (DRAM)

9

Directory

1000
1001

3000

1002

Data
(SRAM)

14
246
175

36

Not Just Fast Memory: Directory and Tags

Address > _
Processor Main Memory
(DRAM)
Data |« -

4><> Comparators to check

incoming tags against

Tags: Minimal identifiers we use — all th(g)seitorg;d
to check if something is
in the cache (not necessarily Directiry Data
the whole address!) (SRAM)

—E

Directory: Additional memory
to remember tags of data
that we have in the cache —

A Cache!

Address P Main M
ain viemory
Processor el R (DRAM)
F Y
()
Cache: —Y y)

“a collection of items in Directory S?R?D:cl?/l

an hidden place” ()
_ y,

-

Cache Hits and Misses

e A cache is any form of storage which takes automatically advantage of
locality of accesses
— The idea works so well that now they are not only in processors!

— Web browsers have caches, network routers have routing information and even
data caches, DNSs cache frequent names, databases cache queries...

* When we find the data required in the cache, we call it a Hit; otherwise it
is a Miss

* Hit (or Miss) Rate is the number of hits (or misses) over the total number
of accesses

Fully-Associative Cache

f— Request is not an “index” but “data” we g CAM R
Registers ; search =2 “content addressable” Content
ag
§ Addressable
2n-to-n Encoder
| . | L— \ Memory y
I o i Fast Memory
| Tag 1 | L s
l o i Data 0
| Tag 2 | > Data 1
| = L 2 -
. Data 2
| | I * Addr Data
I . = =
| | - Data 2*n
| 1= .
| Tag 2*n | —
| 1= .
v }
—~ ~"

Directory Memory (SRAM)

Fully-Associative Cache

The representation
we will use Address

l

h bits

l

Tag

A line or a block of the cache

v

_

0x100 M[0x100]

~— |1}

l

Hit Data

Cache and Cache Controller

A A

‘>

\ Address

processor ‘ memory I
/ Data

Cache and Cache Controller

processor

cache

A A

‘memowl

Cache and Cache Controller

A A
‘ directory I—>
processor

‘ memoryl

processor

Cache Hit

directory

HIT

cache
controller

CaChe MiSS Take note

of the data for
future requests

N
J

\

directory

data
processor MISS memory

cache
controller
IiB

Cache and Cache Controller

A A

()
A pure

hardware

device
_ y,

cache j |
processor memory

What If the Cache Is Full?

0x400
Address
h bits
l M[Ox400]
Tag l (from memory)
| v
0x100 =| M[0x100]
OXOF5 =| M[OXOF5]
0x300 =| M[0x300] ?
Ox17D =| M[Ox17D] e
OXFFE = | M[OXFFE]
0x200 =| M[0x200]

l

Hit Data

Eviction Policies

* When there is no appropriate space for a new piece of data, we must
overwrite one of the existing lines (eviction or replacement)

e Several policies to decide what to evict:
— Least Recently Used (LRU)
* Replace the data that have been unused for the longest period of time
— First-In First-Out (FIFO)
* Replace the data that came in earliest
— Random
* Pick one, any one, and throw it away...
— Approximate schemes, etc...

Only Exploiting Temporal Locality

Address
n bits We only bring from main memory to the cache
l exclusively the data required and when required,
Tag hoping to use them again

| S

0x100 M[0x100] | &=

If the processor asks for neighbouring items

a— Ly

l (e.g., M[0x101]), we will not have it;
Hit Data we are not able to exploit any spatial locality

Exploiting Spatial Locality

Address
Address l
| n—2 bits b

h bits

Tag Tag

0x100 — | M[0x100] 0x40 (= 0x100) || M[0x100] | M[0x101] | M[0x102] | M[0x103] |
= = A
- -/
[a
Hit Data / \ /L_

If the processor asks for any of these words, I-irit Dita

we fill in from memory the whole line

If we are asked 0x125,

Why Not This?!

Address

n bits

we store the address as a tag...

Tag

l

...and bring the value in
together with the next 1, 2, 3, 4,...

Ox125

M[ox125]]| M[ex126]

M[Ox127]

Hit

If now we are asked 0x127,
we cannot compare with the tag!

Why Not This?!

Address
n bits
Tag
_ 0x125 =|IM[ox125] | M[ex126] | M[ox127]

We need to check if

Tag < Address < Tag + 3
(0x125 < 0x127 < 0x128)

We select the right one

with Address — Tag
(0x127 - 0x125 = 2)

This Is Much More Hardware Friendly!

[Tag = int(Address / 4)

(0x125 / 4 = 0x49,

— Address f Select = Address mod 4
0x127 / 4 = 0x49)

(0x125 mod 4 =1,
l 0x127 mod 4 = 3)
n—2 bits b \
< (N NE . o
0x120

A candidate) 0x121 Tag (2) Power-of-2 Elements per Line
line of cache | ex122 l

(1) Alignment

Ox11F

A

ox123
. © ¢ ¢ 0 [p=0=0=0=0=0=0=g ©

0x124

(ox125
Not 0x49

_ 0x126
a candidate <
line of cache

M[ox124] | M[ex125] | M[ex126] | M[@x127]

0x127

0x128

0x129

Ox12A ¥ ¥ k 2 k 4 v

\ 0 1 2 3 /
©x12B

Hardware Friendliness Is Essential

Address Address
n bits n-2 bits 2b
l | l | |
Tag Tag

ox127 mrex127] | m[ex128] | mM[ex129] Ox49

iM[0x127]

A A 4 h A k4

A
1 l

Hit Data Hit Data

-
e

]
o
o
N
w e
7\

This cache may be better, because if the
processor asks 0x127 we bring in potentially ...yet, this cache is FEASIBLE!
useful stuff instead of stale stuff...

Fully-Associative Cache

These are registers and
relatively cheap

| Tag 0

Tag

2"n-to-n Enooden

| Tag 1

| Tag 2

Fast Memory

This is too costly and too slow
unless the cache is relatively small

Addr

Data 0

Data 1

Data 2

This is a RAM and is cheap

Data 2™n

Data

Hit

Data

How Can We Make It Simpler?

Address Any memory Address
l element should go 1
n bits into a single place n bits

= Addr of the RAM

Any memory element
Tag Cango anywhere

1 m=38
= \

G |~ [S0 0x1 (= 0x102) | M[0x102] very
= > cheap
= RAM
= 2:’\ _ 1

l - /
Hit Data /E_J \
A single place = !

a single comparator! Hit Data

How to Generate Addr and Tag?

Address Address

1 1

l A Hash!
index = f(address)
Addr Tag m=8 (1) combinational
| | and (2) such that every index
0: is “used” by a similar number
1; of distinct addresses
2. 0x1 (= (?x102) M[0x102] (minimal collisions)

2°"m - 1:

l

Addr (index in the cache)

Address

|

The Simplest Hashes

771 n bits

¥ ¥ ¥ ¥ X ¥

l

Index

Take m bits at random
from Address,
if the addresses are
uniformly distributed

m bits

...and the rest
is the Tag

Address

L Ll)l f 1l nbits

VYVYVVVYVY

Index

Take lowest m bits
from Address,
if these are those
changing most...

m bits

Direct-Mapped Cache

Address
n - m bits m bits @Xlﬂz
Index —— / | \
Tag m=8

Much (o J

1.
cheaper! 2:[T0x1 (= 0x102) | M[0x102] |€—
_ y, "
...but does it have oA - 1
any drawbacks?!) I] \

l

Hit Data

Which One Is the Best Cache?

Fully Associative Cache

Address

l

h bits

l

Tag

1

Direct-Mapped Cache

0x100

M[0x100]

a— Ly

Hit

l

Data

—

2™"m - 1:

Address
n - m bits m bits
Index —
Tag m=8

0x1 (= éxmz) M[0x102]

Hit Data

Which One Is the Best Cache?

Consider a fully associative and direct-mapped cache, both with 64 lines
with four words per line (= 256 words per cache)

Suppose accesses at 0x100, Ox101, 0x200, 0x102, 0x300, 0x103, 0x201,
0x102, 0x301, 0x103,...

What is the Hit Rate of each of these two caches?

Address Address

N sE®R®NMRO

63:

0x100 | Ox101 | Ox200 | Ox102 | Ox300 | Ox103 | Ox201 | Ox102 | Ox301 | Ox103

Fully
Ass.

Direct

Mapp.

Cache Pollution, or Conflict Misses

O0x100 | Ox101 | Ox200 | Ox102 | Ox300 | Ox103 | Ox201 | 0x102 | Ox301 | Ox103
Fully

M H M H M H H H H H
Ass.
Direct

M H M M M M M M M M
Mapp.

 Addresses Ox1..., 0x2..., and 0x3... use the same line of the direct-
cache (they are said to alias) = Cache pollution or conflict misses

* Fully associative cache is much more robust than direct mapped

Associativity

* The probability of aliasing is related to the associativity of caches

* Associativity indicates the number of different positions in a
cache where one element of data can be placed:

— Fully-associative: every word can go in every line of the cache (hence
the “full”) = associativity is the number of lines in the cache

— Direct-mapped: every word is “mapped” to a single line of the cache =
associativity is 1

()
Can we think

of any intermediate possibility?
. J

Set-Associative Cache

—

2°m-1:

As many comparators
as the ways
9

comparators = associativity

Addlress Multiple replicas of the
T T direct-mapped structure
=8 - a Way
Index —
Tag
(. N
0x1 (= 6x102) | M[Ox102] 0x3 (= 6x302) | M[Ox302]
)‘/w V.
o
— /

\ 2-Way Set-Associative Cache

Data

Set-Associative Cache

Address

l

n-mbits | mbits |

m==8

A line or a block

Index —

<J A s

1:
. 2:1 Ox1(=0x102) [M[0x102] 0x3 (= 0x302) | M[0x302] /

Hit Data

A Continuum of Possibilities

Tag Data Tag Data Tag Data Tag Data Tag Data Tag Data Tag Data
Set #0 Set #0 Set #0
Set #1 Set #1 Set #1
Set #2 Set #2 v v ¥ v
Set #3 Set #3 - - - -
Set #4 v v
Set #5 = = 4
-Wwa
Set #6 y
Set #7
2-way

\

1-way = direct

Tag Data Tag Data Tag Data Tag Data Tag Data Tag Data Tag Data Tag Data

Set #0

8-way = fully associative

Validity

* Initial cache content is garbage

* All caches need a special bit (Valid Bit) in each cache line to indicate whether
something meaningful is in the specific cache line (‘0" at reset)

Address
Address 1 :
| | 24 bits | 8bits |
n-mbits | mbits | Index
Index — Tag
Ta m=8
J 0:
s o 1:
1 | 2[1] 0x1(=0x102) | M[Ox102]
L, 2] Ox1(=0x102) | M[0x102]
255
[2"m-1. =

Hit Data
Hit Data

Addressing by Byte

* If addressing is by byte and word size is 2" bytes, the n least-significant bits of the
address represent the byte offset and are thus irrelevant

Address Address
| 24 bits | &bits | | 22 bits 8 bits
Index Index
Tag Tag
0: 0: These bits are internal
1. 1.
2:[1] 0x1 (= 6x102) | M[Ox102] 2:[7] 0x1 (= 6x102) | M[0x102] to the processor and
- - do not even get to the
255 255 memory system!
Hit Data Hit Data

Addressing by word Addressing by byte

32

Loading Bytes (1b)

bits 31...2
Address

32-bit
Memory

Data Out

/ __ Reg.
File

bits 1...0

Inside the processor

Write Hit

directory

processor memory

HIT

cache
controller

~

Shall we write also

to memory?
\ J

Write Policies

* Write-through: on a write, data are always immediately written into main
memory

— Simpler policy
— May keep the memory/buses busy for nothing

* Write-back or Copy-back: on a write, data are only updated in the cache
(hence, main memory data will become wrong/obsolete)

— Needs a Dirty Bit to remember that cache data are incoherent with memory
— When a dirty line is evicted, first it must be copied back to main memory

Write Miss

A A
>
directory
data
processor MISS memory
cache
controller <
A
~
> > Shall we allocate a
| place in the cache?
_ J

Allocation Policies

* Write-allocate: on a write miss, data are also placed in the cache
— Simple and straightforward
— Need to fetch the block of data from memory first

— If the processor writes a lot of data that it will never read back, it may
unnecessarily pollute the cache

* Write-around or Write-no-allocate: on a write miss, data are only written
to memory

— If the processor will load from the same address, it will be a Read Miss

The “3 Cs” of Caches

* Three types of cache miss

— Compulsory =2 Misses that would happen in an infinitely large fully-associative
cache with the same blocks (also called cold-start misses or first-reference misses)

— Capacity = Additional misses that occur in a finite fully-associative cache because
the corresponding block has been evicted due to the limited capacity of the cache

— Conflict 2 Further misses that occur because the corresponding set is full and the
block has been evicted due to the limited associativity of the cache

e Useful to understand the source of the limited performance

Summary of Cache Features

Cache size: total data storage (usually excluding tags, valid bits, dirty bits, etc.)
Addressing: by byte or word

Line or block size: bytes or words per line

Associativity: fully-associative, k-way set-associative, direct-mapped
Replacement policy (except for direct mapped): LRU, FIFO, random, etc.
Write policy: write-through or write-back

Allocation policy: write-allocate or write-around

Summary of Cache Addressing

Address

To the comparators
Whatever is left...

Tag Index Word Byte
¥ L
To the SRAM address port Useless
Bits to select one of N lines Bits representing
(only 1 line in fully-associative, the byte offset within
hence no Index bits) a word
L ; ¥

To the output MUX
Bits to select a word
within a line

—

Allocate bits as required, from LSB to MSB

References

e Patterson & Hennessy, COD — RISC-V Edition
— Sections 5.3, 5.4, and 5.8
— Sections 5.9 and 5.15 for more info

	CS-200�Computer Architecture�—�Part 3a. Memory Hierarchy�Caches
	The Five Classic Components of a Computer
	Memory Performance over Time
	The Tension between Big and Fast!
	Our Goal Today: Use Different Memories
	Our Goal Today: Use Different Memories
	Where to Put What—and How?
	What Memory to Use?
	Spatial and Temporal Locality
	Our Placement Policy Must Be…
	Cache: The Idea
	Not Just Fast Memory: Directory and Tags
	A Cache!
	Cache Hits and Misses
	Fully-Associative Cache
	Fully-Associative Cache
	Cache and Cache Controller
	Cache and Cache Controller
	Cache and Cache Controller
	Cache Hit
	Cache Miss
	Cache and Cache Controller
	What If the Cache Is Full?
	Eviction Policies
	Only Exploiting Temporal Locality
	Exploiting Spatial Locality
	Why Not This?!
	Why Not This?!
	This Is Much More Hardware Friendly!
	Hardware Friendliness Is Essential
	Fully-Associative Cache
	How Can We Make It Simpler?
	How to Generate Addr and Tag?
	The Simplest Hashes
	Direct-Mapped Cache
	Which One Is the Best Cache?
	Which One Is the Best Cache?
	Slide Number 38
	Cache Pollution, or Conflict Misses
	Associativity
	Set-Associative Cache
	Set-Associative Cache
	A Continuum of Possibilities
	Validity
	Addressing by Byte
	Loading Bytes (lb)
	Write Hit
	Write Policies
	Write Miss
	Allocation Policies
	The “3 Cs” of Caches
	Summary of Cache Features
	Summary of Cache Addressing
	References

